£19 @ [FHEREYVRIVL] BERXE

Proceedings of the 19th Spacecraft Environment Symposium

20258 35 A~6H
HREHAE EAPXU. 54,7 Yy o
FHMET R EFEEE
TR
Japan Aerospace Exploration Agency

Aerospace Research and Development Directorate



519 b FHEBEY VRV Y A

Ky Ry vy L, KRG — IR B AR, FHARMRTHERE, FHRA TR &
BICE., THARAE T 7 A=A % & oM@ % | FAER - ToAry 2o 5 R,
F B OB OHGIH 2D 5 2 & THEME LG & H L. FHE - FHERBAH
DHRBICTFET L L2 HIEEL., fllERZ L TS0 F L7z, 2021 -2023 FFld 2 v F FLHH
RO EHZE D20, > v R LD IZBRAZTENTE Y £ L7225 FEFE X D HEH
EELE L,

DFF L CUE, FHEREICEAT 25 OMERR., 7 vy =7 F o, Wi oBE 55T
OB EDFHRREDLE LT, FHERY VRV Y LAEZHOD CTIEHLTHEE 2 F
CEd,

O HERETTRY: REWUITET B TP v 2 —
o fiE . RIRASIRYE UZETH TR
FHMZEVT AR OF5EhE R

Ehtigrd @ =EARCRAHETTRS), PRPHER CRIR AR
ARA B (T AT ZE T FE B FE AR

B
H KE: 202548 A5 H(CK). 8 A6 HGK)
% Pr: TCU Shibuya PXUCGER# iKY #8327 ), KU Zoom [fE

(a7 L)
8 H5H(CK)
13:30-13:40 F—7=v 7

tyrvavl MHE:RE % (SHREGSTITRER

13:40-14:00 PEH E8 (7 v v 7 4 THEEEHET WIES EFHRSWIER) ., EbL L
ORVBLFHFRA ~TRELDICETCEZV T 7> —

14:00-14:20 [ w08 GRS fib, IRIS fi ol S -\ 2w ¥ — K 1 0 Y -
RIAM 23R8

14:20-14:40 JsF A (YRS K fth. Jason-3 #EHUGHRE = £ 1C X 2 BUEHRE O 5
T BTDT7 Ty 7 ALENCET 25

14:40-15:00 EiE H (IES & FHRKTCIT KBKY) . #2 SE R E KT RO FH
KA




15:00-15:20 il FF (FHMZATFEHZERR . MMX #EHE 22 R B
=% IREM OR¥ & #e v AT 4 OiBRR I

15:20-15:40 fnigE AR (B h@tkAatt /Al EREM. Al BllRE 7 vic X 2 K5
IAINF—RTERD 7T 7 7 4 LFH

15:40-16:10 Break

tyvav2 RPN HERCRIRAIKRY)

16:10-16:30 RF % ([HHcAEUIEEE) . SXKEEFELE (CGMS) 12k 2 # A
EEMOIEE & Z DI

16:30-16:50 ikl fE—ER (FHMIZERTIERAFEREME) fth, Frififeiiiia € 7 v o F ik
FEHEATE BT 2 g

16:50-17:10 BAKF ¥ (FHEMZEVTIEHFRME) . HTV-X3 SHERMNT 7 ) € v
¥ (SDM) DBf%

17:10-17:30 %55 # GEFEUTFCHZEHERE) b, BEERE 7 — 2 vz KE &z a v ¥
— K7 Tk DT

18:00- B

8 A 6 0K
ey av3 BRI PET CEHEAZERIR
10:00-10:20 PIBF 3 (HHEAY FHoHEBBHIE) b, SRR Al 2 7

i S Jeel. > 1 ]
10:20-10:40 =4f Wl (HHERY: FHMBIKERGNIZEAN) . KEBEICE 1T 2 THEK
wse

10:40-11:00 A% & CRRURY) ftb, A WS BRERTEHINC 1 ) 72 i/ = 4 v ¥ — S 15f
2% D BAFE

11:00-11:20 AHH 57 (IEHEGSHIEERE 2 ERY: FHHEREREEMIIN) . FHRR
FHUCBE T % Il o FEFEH) 1A

11:20-11:40 #fp  &H=F G RE ToAsesl) fh, ZAE 5 RS R o 72 9 o
Blla 7y~ EEHEZEE]

11:40-12:00 g KZH (HEZz AL ¥—v 27 A XA &) fth, FHmERICE
J2 YU TNRALNANT v TorBEATICEE 3 2 WTFERE 7

12:00-13:00 Lunch Break



tyiavd FBE: =% 50R CGERETAS)

13:00-13:20 H KH (BAFIBI)H—F &T 27 /7 v — )M, BEWEE B %2 H 724
BOERE o FHERE T RIEAN O & . TR~ 0@ Rt Ic o » T

13:20-13:40 kT AR (KBRASZRYE) fth., BURHRE AT 2 il 3 2 Rl i 2 o HE
& ZRBF BB O REZAL

13:40-14:00 A BEA (FEHMTZERFFERHTERNE) . v M KBuEf R R 351 2 FH
MRERER & (SRR oM E - FllT— 2 &b Lic | —

14:00-14:20 ¥E&  J1k GEEESTHRYE) . BT X 1z FFERMEL O R E I3
% ARHR S B o fo

eyvavs JEE AR WE CREMEDRITEHND

14:20-14:40 §5 R (HHCHIETIZRHND . B T-H0EH 1 X 5 BRI o
R

14:40-15:00 Necmi Cihan ORGER (Kyushu Institute of Technology) f#i. Lunar Dust

Lofting by Electrostatic Forces over the Terminator Region: Correlation with Solar Wind and

Geomagnetic Activity During CME Events

15:00-15:20 Sara Aziz (Kyushu Institute of Technology) fth, Mitigation Strategies for Lunar
Dust: Challenges and Innovations

15:20-15:40 &Il sith (EHRGEFTITEERD . BT L W FHRKA ~ v bl (SAFIR)  Jx
CFH KGRI A ¥ 74 2

15:40-16:10 #AsER - 7 v -y v 7



HX

EL L, OB 2FHERA ~TRLELBDICHTRAY TS — ¢ o o v o oo v 0 o o v 0o 1
PEHIES (FriEt/ 7 v v T 4 THEEFEEFR - FHRAF vy 2L —/
HREEHE VIS 2 FHRLAWIZA)

Jason-3 BEBUHRE = X iC X 3BHBHE OB T - EFD7 7 v 7 RAELE BT 305 - - -+ - 6
WP (EREKRY), KARHE (JAXA)

R EEREETEDFERG s » ¢ » ¢ o ¢ v o o o ot o o o oo oo oo oo s o a s o 12
EiE & (BFESHWIES & FH KRG, ZINKEWIE - L)

MMX #EREEEBERREE = % IREM OBRAR L RAES AT LOHEBRRH » » » -+ - - - - 16
T (JAXA), HHHERE (JAXA). L#i%3 (JAXA)., E¥E (JAXA).
Higs JAXA)., F)IRIE (HEER). EE (HEEXR) . KEH T (HEEX).
Bz (77942 v R)

AIRIRETFVIC L 2 RBRT AN —RTFREROTE 77 A TR -+ = o o000 v e e 20
MgERR (8 wbkaatt, 4ERY), SN GE @k att), gt (GiER),
FHTHE (& @tk att, #ilERY)

SREEFAERLSB(CGMS) LB 2 HEBEBEROINEL ZDIEH « « « « « o ¢ 0 o v o oo 25
£F B (NICT)

SRR = 7 A O FHBERAMICET BT -+« - - - o e 28
AL EE (JAXA), AAHEE (JAXA)

?ﬁ%ﬁ%%ﬁg:gﬁj—%%ﬁ@@l}%ﬁﬁ .......................... 31
H3sE (NICT - 4 HEKY)

AETHEPEAREEF OO0 ey y MEBHERER -« « - 0 000000 e 39
R =L (RFREE) . /I A (RFRSE) . BAHEDR I (I R5E) B ASE T (RF R,
HHIPHE N (R 52), BTERERSE (JAXA)



FEHBRREEICBIT R Y TARAL LNAANT v TSNS AR « + ¢« o o - - 46
HHER B, RIEEELZ, BIRREsE, MEREL, BHREE E A F—v 27 LA .
FEE, EEE. BAEA, mBE (JAXA)

BB BN 2 i 7 HBRGE S O FHER FHIEAMN OB & . FHBREI~ DBRAFREMEIC O W T

...... 51
WEKH, BEE (AFBIVY—F&T727/ vV —X) , KEHEE (JAXA)
TR N 2 BB T 5 PREME OWE L —XETHHHAKOREEL . - o o o o e - 54

Rl R i R (CRIRASZK)

FFREHGER ZRRIC T 3 THEBGHRRE L EREEREroRE - RAT—22dLic! — - - 58
WA HEA (JAXA)

BFREHN I W AFEMMEOREBLAICN T 2 FXFHEERB) OFE - «+ » « -« 2 0 0 ¢ - - 66
FE 1k GRAEETTRY)

BT RS IC X 2 FHBEBRMRIOBEESREMHL -+« « 0 0 v v e e e 68
B omR, B EE. RE F (NICT), =% k%, Wb HEE GEETRY)

Lunar Dust Lofting by Electrostatic Forces over the Terminator Region: Correlation with Solar Wind
and Geomagnetic Activity During CME Events « « « + « ¢ ¢ « ¢ ¢ o o 0o 0 0 0 0 0 0 0 0 72
Necmi Cihan Orger (Kyushu Institute of Technology) ,
Emine Ceren Kalafatoglu Eyiguler (Athabasca University Geophysical Observatory) ,
Sara Aziz1, Kazuhiro Toyoda (Kyushulnstitute of Technology) , and
Mengu Cho (Kyushu Institute of Technology + Chiba Institute of Technology)

Mitigation Strategies for Lunar Dust: Challenges and Innovations « « « « « « « « « = « « « « 77

Sara Aziz, Necmi Orger, and Kazuhiro Toyoda (Kyushu Institute of Technology)

FLOWEHRGAA R MEH (SAFIR) RUFEHRGEBRFIATA FTAL Y« o o v o o o e 81
#)Ils4 (NICT)



EOLEDUMNEIFHRR ~TMREEBLITHETHI TSI V—

VO SERE (it 7 v T o TIEREEA - FHRKT v A X — /GRS &5
H R XUIFSERT)

1 ZL®IZ

[FHRE) EHWT, EDO X REIREFFSTEA I, EBWFHOH KRR, HDH 0T
HERZIF0FE BN b L, L UEBRICIT. KEEENC & 25 281357
HLOAETEICEE L TWD, K7 L 71X GPS OFEZEL L, ARV TAE-SOM
TCHIT A .2 5, WIERES. kL VoSO ZEICLEDAMETH D,
ZRZHEDDPDLT ., ZLDOABRFEHERKEMLR, 0O LRI | ZEDRRELER
HERSj i K12 - TV B,

2 BOHLERMOSKFHRR

FHRARUL, 8F - B - Gk - GPS - B L \WoTo oA U7 TITREE KT T, TF
TIE, 2024 £ 5 HICHATEM SRR A — 1 T O, @EREENFA LI ik
NboTz, T, BKREIZ L > TATHENHPIEICES TR FH L ME I Twn
%o, FHREKIT NEWFHOBS) Tk, T TIEEHLOEL LO—HE LTl
TWHBETH D,

3 ImAHZLDEEL X
FHRREFZSZEIIAETHD, Ll ez b &b 8L I, BB
oOh b,

B, PHERIE 15T <ol TlEl, MRV ELHICAZRWELTH
LIz, ANxDOBLEFZIT Y,

BT, BHICE L OFEMHRENYLE L L8 THD, HREI T2u g &
(CME) | 7> R) [RAKRIT 4w 7 ER) 2L, EMFITIEBIRAROGED £
IEEICITEMNEE LV, LD -> T, FIRE L&A B U CAEEEOSEICE S D T
KINARAIR E72D,

4 — AL ARKTHROIEEH
EOEEHZNITRIUBDDDIEA SN2 Z0HEEE LT, EEHIIEH. 1 EORK
EFHORREMA G DY [ — A VAR T %SNS TRELTWD, 22T,
Z O EARBIZARIT LT,

Bl1: BEE KRG LT ZREHIGZ D

[BJE 8 H 23R AT CEM L, Kl & BREUCER AL BT, Ju Db BIRITEE 2
e < RAIAZTT, FH TIE, KEERRO0NER T, IREIfEIK 4161 08D C 7 Z
ATZVLVTHREAELTHVET, |



ZokHT, HEEFHORKERIMEZ D Z LT, mah EROERER L 1TF
HREAZELEALD LI LTWD, FIFEMIT O (RO BLSE & A LR
DA E) 3B E, RO VIT TEEROED LICBRT 285 & BRI 2,
WZ, BB E N EMESCHBENE KT 57 8 [5%0 U A7 | ICEET D 1ERITTES
REETHIR L, AIEFICLERITEOHW I L 7205 L2l LTnWbd, £/, AilElH
ERIECBINLTZ & S ITIERIE S T iE IR R > CE 2 L &% TRIEIM 7 2 A7 LT %
B SHIIEBFIKOON R CTEE L] LD LBILAZFFST-RBL M S 70 L
DTRHLTWD,

(34 : %34 Facebook7 H 28 H L 1)
[“fEfR72 8 S"DE T, FHITE T I 2 =]

BIOE—713F KDY EEA,
BEOBXICH, BAHEICH, 4 H b IEERSLETT,
NY— LV ARKJATH

H EORE (L K8T)

B 8 I R IRREIC A Do T2k, 7 A 27 ARICHIE L THEERR L7220
F L7z, SHEMMARMII TR L Tl 0 . ARHIT-OMRBEARIIORN « M - &zl
BREER

—77 . KHEERECEDNL TIUN S RALE TR e E . BRI TILEIRE 2 - 5
EFHOLEL, BRI EER L, FHIOTRIIRIE LR ISR 222X RA L. K
KPR LEZR Y 9, LR HE TR SN ERICER TS

B9 SITIRNB N ERoT-F E, 29 B (H) QI NEERE B ICRZELT 5 RIAA T
To ARG, PNERTIE O RV 2 T2 RISERERLE T, £ ORITFRECKR D
Bib, BERSREAENS TN TOTH, LT THIRW TIEEEITEEN X
T,

[R5 R&] (NICT7 H 28 H 9 Bi%3)

KIGIEETOCTESE, THEIEIK 4161 S KGO R IR BRI VAT, C 7 T AT VT 24
BRIEASETWES, 4% 1 B, FERZT LIS C 7 T AT LT NFREAT L lHE
PR £7,

HRERIEENIER S, KEBEUIRZoICHERE L TR, R ~DOKE BB e T
BN TnE1d,

SR E AT, 7T ARG D, 23 BICEHRFEMITMER S vE Lo, fEik
BIE TIHEARCmOREE THER ., 5RO EFRICHEENLETT,



ARTT 4 v 7 EBIL. 27 BICAAREZH THRONVEENH Y F Lz, BEIC—FNRE
BN AREME D, ABITOCEER I REBICm ) ER BN TWVET,

[O0e ]

EENZIRE LT KEED SNS Z# R Cnd & HHEIATE 20, JINTATE W, v 7L
AN AN ARV =)= e

BRHSFICRDETIHTEAT, RACELNT, WEOBWA TRIEZIRD TV
&b DU,

—ZABEORVH, HRIicbbHD e



Bl 2 ¢ HE VR EAEBRIFF O SNS #56  (S4k7eRBL)
DT X T B O MR THBE R WA R - MRS NZBR. ERTAMEORIT

TR & JE 1 7z,

Tl 51

O "RBTHRE

@ RELWVWHEARE (h2 L)L)

@ m—~FHKiL (@Dr—~FKL)

RILNE

(AuR B HAERR] <8717 H 31 H
Pk 4 30 4312, T O MU THELNE
EERAEMRELE Lz, —J. i#kRE D
LIE6 L ORIFEFOBmEB NI X 5
AREMER B D & LTWT, HED LV —
I H0EET 2 L OO T E

7T

[Tsunami Advisory Lifted] At 4:30 p.m. on
July 31, the Japan Meteorological Agency
lifted all tsunami advisories. However, it is
still possible that small changes in sea level
may occur for some time. Please be
cautious when enjoying activities at sea.
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[ Tsunami chuuihou ga nakunarimashita]
Kishouchou wa, 7-gatsu 31-nichi gogo 4-ji
30-pun ni, subete no basho de tsunami no
chuui wo yamemashita. Demo, mada umi
no mizu ga sukoshi ugoku koto ga aru kamo
shiremasen. Umi de asobu toki wa, yoku ki
wo tsukete kudasai.

IO —vERIDE T T-OICII#ELE LTORBRNS Thh, ZEEOKRES &3

LT, AARGEZ TH< ]

BRI ixTTE A, THEte) EL L ITETLED

SN LT LIZHE 7o, FRCHAGEOIL TR GRTF - OB - WX DT) IZ+57



BTN AIE, BRI —<FTAEEH - T,

Bz X, BEER T 4 U B GEOR M AGEOIKEE Y, BH O LAY T TRY)) &
EX - E X2 [taisetsu) & —<FTiodk L TV,

ZORERN D, BIRRLFHRRUCEHT 2 HEEE RS v —~FCOfFLT 25 Z L ITEBE R
BENDLD LMEL WD, BIKICE, X TOZEELVEROTH S,

5 Mz 2EMT LVTFo7v—oif

FHRKUITHEME ORI U iy, Bzl 5 2 L0, Bk %2 E
b, RkESFHLE LD, BAREEE21 RIIEHOBHREZREL, T0EDIC
(MR BIRE SN TWD LRENTWSD, SO T, MRIC i RKKEm5
R DREESNTWD EFERDTEA D D, ERREFEMEATUIE BTS2
HIZT 5, | &dD, BEHEAEMDZ LT HOHTHY, @R L 22, HRIZTS
DTHDH, FHRREMDMHERN] BT, el EENRL0E LTS
ERH 5,

EEROHFIZEBW TS, KEFICHM L THL D I -OICEHMHEEZ EAICE SR 50
ERH DL, BHEFITEEEZZOEELRZDH T EIEF LR, HIZEI P T<nad
2y, WX HARGEORFRIFHE A2 el T\ b, FHAK LR THY | FFK L AEEHED
U SEOFHIRR A AR K TH 5,

(OB EAREE] TER, [RAERIMSTWD | IZEZDIET T, Ak
B 2D, FHRKUIRM ORISR TIEZe | MAzRdmiEke L OEfEhs & T
Hb,

6 BT

FPHRRY T I —%2HRELEBICETC TV ZENEETH D, SNS TORERHIT
REETOEFIZE ST, HoTWDANITHSLD 2D AN Eleivd, 82252 LT,
REEFS L, MADNE@EmbDHILNTED,

EDITERIL, FNORRET T T FHRA FIKA 0% EWw)H e ERos
EFVLERELTVD, BREZIARNL, FHRKREBEOORBVIZONTEELE D
LBChnH, BMELTRGEMZ2SELED, XL LTFO, @BNLZEMEZIRT5HZ LT,
FHRKEAD EEEOME] E LTRSSV TN ZEEZHELTWS,

ST, BHEDAHRRIE, HBRIEDFTE, bRIEOFV W ANIBDL S TWETN?

Uk



o el Y — -
Jason-3 FEHH R E=Z T L D
Y, ":H" El == = N N -
BB DT« BT D7 7 v 7 AN 58
Ofsri AN (BIRERT), ANAKIES (5 aEmr e e R )
Research on the variability of proton and electron fluxes
in the radiation belts, on-board the Jason-3 satellite.
Yujin Kawamori (Kagoshima university) Yugo Kimoto (Japan Aerospace Exploration Agency)
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Development Results of the Interplanetary Radiation Environment Monitor (IREM) onboard the Martian
Moons eXploration (MMX) spacecraft and status of MMX system Proto Flight Test
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X3 2DFVa— /v (FEREY 22—V BREY 22—
V. BREEY 2—/b) THIR STV 23, IREM [
ZDI)BLEKEY 2 — L OREBETICHEREI D (K
1), EHBMIIIT ETFROMATF = 7 T h—k
B JE 1A 15 N — Kk BB B - HUER R £ TE2 BT
TEME#9 5 -] (Phobos ~D & T A5 ke b 5 FHRE7R &
DU VT 4 FVIERKEZERLS) Th O | FH B #RER
BROWRBIRAZIT O, KEBIZE T 2 FH B
FZBIIE NASA @ Mars Science Laboratory (MSL) <
v 3 » 2 % The Mars Atmosphere and Volatile
EvolutioN (MAVEN) < v a3 ¥ 3 BNEIT L5038,
RIZZOEITIEFIZROEN TN D, FZnbHD
v ¥ o CIIBLT D R O = xov F— P I
MSL 2 v = 2BV TIEL 100 MeV F2E F T,
MAVEN = v g 42BWTH 7 b OFHlD %

NX—FIEIT 12MeVEEEE TTH D, IO EEKE
ZTUREM 2 v g v OERAMNE BRERITRT,

(a)

(b)

1. (a) MMX OFEE (b) MMX (2817 % IREM 4
E DAL

O FHAEZEMOBRREOHIE
FPTREAFINER STV S BE L O RIS
WTH BB, TAHAHREZIT ) 28T VT s A
LATT =2 2BUGT 5 Z & % BT, IREM OllE ¥
—7y ME. BEBLEFEHMR (Galactic Cosmic
Ray: GCR) 3 X OZERHNT KD B IAET 5 K5
TR )L F—Hif (Solar Energetic particle: SEP) 1Z331)
H7 1 b BRI (~Si) ThdH, £z, BIfE IREM
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OFEAWIM I, OWSMEIRIZIB VT HIME Dk
HWE=X 2 KBTI CERAT L Z ENFE I T
W5, IREM 23N HUfG L7 7 —ZI2MAx T, Zauh DHEL
BT — 20, LITHNZZETF T MSL 2 v a VEDT
—Z LTI 21T 9 2 & T, KRB 1%
VN Z2 R O U R EBR BRI Z DWW T O L 22 B BRI
RIRD EMRES D,

@ K7 VT ORI X—AT MLOFH

KEG7 LT BRI 5 & mT kX —DR ¥ (SEP)
I & 528, IREM 13 Z OBRIZFEAET D 100 MeV
bt hrozxr hVEGEE BT, K212
AP K 91T, IREM O3E I I AR HIER— K R R D
FERICBWT, 7 L7 P& DHRNEE D KGE
BOIERRFHI L H D720, L0 E DT —H2 R
B/BoONDLZENIFFTCED, ZNHLDOKREGZ LT T
—Z 13 FIZIE A AR ZERRE (5 5] K
AR TO0 T, KEMKEEE (B8] 72
L. FHZERI OB P H5ET TR R ZBLHI L T
LHikss DT — 2 LA AL Z LT, HlxiE
FHRKTFIZBWTKRE 7 L7 THIE~DISH R
I TE 5, EREROICEETHRE T LT Ok

FE<MEPBE SN DA NTHRAREHICBN TS,

TR =R O RIIBLEARAI R TH D,

B 2. KRR OREHZ (L (NOAA SOLAR
CYCLE PROGRESSION % HIVNTHERL, — &R ZE:
https://www.swpc.noaa.gov/products/solar-cycle-
progression)

DL FIZiR 72 & 912 IREM O FS4 55 — & 138+
R, ERRRA, FHERRAR L BRSO E
BREERE BT — 2 LR A NSNS,

2. IREM DIEBHERL

IREM ®7 F A FETF/L (FM) B L OSEERER D
BRI [ % B 31T d, 2EEITE o L = LR ERIC
ILTEY  BIRDH A X% 2552 (W) X225.2(L)
X 139.4 (Hymm, B &% 6.2kg, HEEIIL188W T
&5, IREM Ot U2 F N RN L 725 L9
MMX #EROFEIZHDIAEND L HICEEIND,

(a) (b)

[X] 3. (a) IREM @ FM {8 L TX (b) IREM D Sl

IREM (L, 100 MeV »>5 300 MeV &£ TOE T FR/LF
—R T OFMER LN Y Y —ATEHRT D0,
I IvI7OX ¥ T T oz 198otE
T ERERE Lo, 2R ORGSR & UG
Sz, B VOB Z X 4 1287, £ o
FREFBE ORI, B AN S D ASRI 7D R Y
TR ZWE T D 726D, 40 MeV 2 D A TG 773586
WMCEBH L HANaY A—F QmmE) ZRE LT,
Ki D NI 510 % 50 5 7= OB O Sit v
(Position Sensitive Detector : PSD)* 2 K, 15~300
MeV F COEKT RV F—%EHT 5 SiPIN 7 + b
XA A —R (LLF SSD & &G, 28 mm ) 17 K, Ik
B (Cu) 6 Ko HAERR ST 5, BlfEisy @ SSD
1. % B D SSD & XBI9 5 72 ML-SSD & il § 5.
235 ML-SSD1 ~3 D 3 D& flAtbE b Z LIk
T, Bk % A 72 AE-E B2 L72RiF Ok
HAFTRETH D, £72. ML-SSD # 22 & kT 5 X H 7
BT RX R 2 OWTIE, SSDI ~ 6 IZBIT DA
SR O ILEN BT 5, Zh bt )
LOT T ZE X, EaEiER K OB
AT o 72, 12 £ v I ADC (Analog-to-Digital
Converter) Z AW TTF X b &b, = D%, FPGA
(Field Programmable Gate Array) (ZASHH S V7B H 7
7 =AU =TI Ko TS IVT TR H e
EOHER L ORERE# OG- 72 K2 Ehi L, &M
HIBR O SN S . RO L — f X — 2
T 5,

17


https://www.swpc.noaa.gov/

X 4 . IREM & >V OWriE X

3. IREM OBUET—&

IREM |5 22 MICAFAE T D U Rk O
BLOZRZ VX —EERHNT L E2HNET D,
IREM DEf&GT 557 —421x Oh v b5 —4% BX
N @QUVARNT—=HZD2oTHY, ZNHDOHIEET—
R 1 BRI Li2A Xy MUz X » Tl b
HitEEE o T B, LTICENEN O A2 RT,

O By T—H

1R LA Ny N33 4 X RELETH
S78A (SEP #AERR L) 1XHEIC IREM Ol
EE— R SEP &— RIZBATL, hUv T —4 N0
ERREND, BTy v T—213 1 BiEicbR< b
10,000 A~ NETHIEFTRETH Y . SEP 2354 L
BRI B XIETE D, IREM IZIE 1 A X MBIz T —
TNVERBLTHELT DI Bl 7Y A
9% Look up table (LUT) NFEEINTEY, K17+
Bl (~Si) BLOAF =R LX—HENATRETH D,
LUT I3y 2 = L—3v 3 Y =)L T 5 Geantd
A U7 RHRAE R OER L7, IREM (232 s
TW5 LUT ® 95 5, H#lfy7e AE-E 5% UV CTYERR
L7z LUTI BX O LUT2 %X 51277, Ziuist
VHTOZFAX—FTRY » b (BRBA KT
TRNLX—&) ZRODH LT, HlihE ML-SSD2 1
K3 ICBTBHTAY Y hED ADC FEIE, HEdhz
ML-SSD 1128175 ADCfEE LT7ry hL7EHD
Thd, ZOFmy MNME—TE#HHZEIZ CH & LT
DEIL, A SNHBURRA ED CH IS T 50
AU RLTN ZETC, RirOfEEE =¥
—NFBITE D, IREM (31 7 A B On—4 A
YDOZODT —EERGETHZENARTHY
LUTL iENA T A T —F %, LUT2 idn—5 A 7
—HEBRL TS, LER-> T, LUTLIEEIC S =
hr O A LUT2 T8k T O a2 &2 —5 > R &
LCTW%, 260 LUT (oW Tid, LUTL ICBAL
THEIRZEY A 7 by - FVFTA Y =7
&> & — (Cyclotron and Radioisotope Center: CYRIC) .

LUT2 (2B L CITHB RS (EEE WA ARER -+
VHE=IZBWTT T R B LN 2C O R R
BA1TH 2 L THIEB L O RV X —8RIEZ1T - 7,

(a) (b)

[X| 5. AE-Eplot(a) LUT1 (/A7 A, EITT
kEHAED () LUT2 (m—%4 o o FICEki 5
)

@ VARRNTF—X

1RSI LTe A Ry MR 33 A X b LD b/
WG EIE GCR E— RIZBITL, VA T —X D4
PR ED, VAT —XIZ M) TANEMEE
Wiz LAl hans, trdomtey—2
EEY R MELET—2THD, ZOT—ZIZON
TGeantd ZHNW/-T I 21—V a UFEREBO LS
b nZ T, A2 MED XD FEMZR R O
o x VX —EEZREHTHZENARETH D, =
NHDOEIL G-factor Z@HATHZ &L, 7T >
7 ABA~OHE L ATFE L 72 D, G-factor I3 LV OFF
ShEFEIZ AR GLIRA) #F U TROLNDHET
5 M IREM 1E 19 H D& B2 TITFW T G-factor
RO DMLEND D, BUEILIIDOMEE EEICE
H3 2729, Geantd 3 L O Sullivan & DOFHER S % H
WCEHERI 22 Rt A D TV D,

4. WEBLESBOTE

IREM 1% 2024 4 3 HICBHRETHEASEZR T,
MMX VAT LA~DT7 T4 NETNLOF| XL %58
T L7z, BUEIL 2026 F04T BiFICmd, fEHbkes %
OB DETRE S AT LB S . EHT
— AW T D VAT AMEEEFE L T\ D,
IREM F—AFBARICHV R LITRTYH IR
FAT VT H#HRELTND, FT ETHRIT, H&HID SEP
AR NIMIZEI LD, IIF v 77U MB L
OVE )72 GCR 7 — # (23 T IREM OREREMERE %
s+ 2, 0% KGIEEIZ FRE Y + > T3 572
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Wz, ERKHEI O %2 & O 7= SEP 7 — Z Bi5 ) He
FEIZETE D L) HEHT D,

F1. IREMBARBICBT Y2787 F747 VT
=< WM C/O 5T L UEAS L7= PSD & SSD 4=
TOUVRNT =05, B GCR R
SEP @ 15 MeV~300 MeV DT R /LF— 2
N7 MV (HHEE) ITBRETE 5,

v 10MeV LI E 10pfu L ED 7 L7 F—% %2
FLLEAS L, W EICRE TE 5,

T AT 100 MeV L ET 10 pfu A D7 LT F—%
ZHG L, WHEICHRETE 5

Eil33

IREM FM OSSR IR R 2 i T 512 H 72 v |
BT RAF =T AT L TR, RAERES A 2
nhkaly - Z0F7A4Y =74 — (Cyclotron
and Radioisotope Center: CYRIC) %, HHI F-IZBIL T
L HIBRY: (5 RAARER 22 —) ZFfl
AEIETWZEE L, RONEZAT Y 2—1D
T RBRICBE T 2 A E S 2R IR %
B ELZZ &, ISV LET,

BECER
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AIEBETIIC LD ABEIRINF—
RFEHROIOI7CIVFH

hhEksaAL 2, SRR, E¥F5eth?, EETFHE! 2

1. ET@%Att ETBWARAR FEHT -FI0>TA VAR>S -
2. ZEEXT FEMIKRIEATAR

kato.yuta@fujitsu.com

R, ERBIT S A TR R o v s
(AXA) FEEE(IA-S20)\TE L EHRE =R E * SBETT
(RFPYRIRZEAFLL TRIBLE D THS. h AFHE | Bk

Introduction Methods I Results I Discussions ] Summary |

® NOAA S-scale (>10 pfu @>10MeV)(CLDDFEIR DI F B (CHVTESZFE
(e.g., Whitman et al. 2023 (review paper), Fujita et al. submitted)

o LDFHRA> I\ MeF AT 2D, SEPEROFUENRTOI7( I FRIEEE
o 5[0)(3, SEPEROFAME(peak flux). 2 (fluence). HEZTTICULARY ML FRICERDFEH
o IDERFHBY—TYNIRIBEITLIN, SEIGER I LMBEFBENHYO)%ER (Rotti et al. 2022)

DIEIRY (e.g., Fujita et al. submitted) ElVFS R

2Bt
Wide Learning
(Explainable AI) S1-S2
S1K7

©2025 Fuijitsu Limited

20



XiRsaE (2F vrIb)

®Z<12h - 5min ZA /]

o)
FUJITSU

Introduction SIS Results / Discussions / Summary §

71/755&63‘ 71/7’5—')
e FIFHAOY -SEPANYNEE
GSEP #%0% (Rotti et al. 2022)
0.5pfull &

BEFRE(6FrRI)

1#@ZA12h -5min ZA ]

> (GSEPHAOY(CHITBREME)

® 5'_9;;5& (1. (%>10 MeV peak flux Ffl))
¥ 2114 (1997.11 ~ 2013.6)
TAN : 544 (2013.6 ~ 2017.9)

o FARKRERINT-4

— 71553 (12850 - 593), X139f#EE
Xz 1-4R, 1-8AD2F v
B>F#R: p2,3,4,5,6,7 D6F v

©2025 Fuijitsu Limited

AF5ARE

2. (IRVF—-#43) 'Ok fluence

[e0]
FUJITSU

Introduction UEdalelsEl Results / Discussions / Summary §

1. 7’08 flux ORXE
(IRINF-FER)

s

[(3. ARI MLFH)

X2, AW F RN DOWTTFRIL.
BEE Ty TA I ICLDEH

©2025 Fuijitsu Limited
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G

Introduction ~ Methods Discussions / Summary §

Fujitsu Kozuchi AutoML LSTM iTransformer

iTransformer Fujitsu Kozuchi AutoML LST™M

Liu et al. (2023) (GradientBoostingRegressor) Hochreiter & Schmidhuber (1997)
— - —
S1 S1 S1
ipfu) W] (ofu)

o [ENF0J(CHVTHIEIRAI(S1LL /K 2 RHEL TWSSEATIRFL B ZHERR
(TSS~0.9, Rotti et al. 2024)

©2025 Fuijitsu Limited

cm—Z)

Fluence (MeV~! str-?

Introduction Methods Discussions / Summary §

Fujitsu Kozuchi AutoML LSTM iTransformer

AdaBoostRegressor

Fluence (MeV~! str~! em~?) Fluence (MeV-! str! cm—2) Fluence (MeV~* str~! em~?)

® >30, 60, 100 MeV %> Fluence [CBVLWTEEEET I DIBE & HimzENE

©2025 Fuijitsu Limited
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Introduction ~ Methods I!l! Discussions ] Summary |

(2012/3/7)

e 5], AR11429 (X5.4) 2012/3/7
® Peak flux = 6530 pfu (>10 MeV) preliminary
o RAIETILTIOANRY NEE/NGHEL THD
FHEPFEBT-IDBNNZIERFT IS
(X114 PET AN THED, iz EhE+)

o N\/FEHEADA >\ M OBIES T

- SEIAS
(EOVWTHRER
Kappa®fi:
E)=A(1 B\
fE) = +K—ED
BIRF—EEBNES
FERIREEENE T 1w b
©2025 Fuijitsu Limited
Introduction ~ Methods I Results I Discussions M
o HIE

o EHOMMFE SEBFEE7IIVXLICED, SEPTOI71 )L (peak-fluence) DFHIET )L 21
o M5 fluence FroRIAEDTANEICTU. 11 SEPAARY NMIIHUSEDI1vT 4> % EHE
o fER-HRR

o [OFFRICHBVTE. 10 pfu @>10 MeV BEEIXIZITITATIARERZFDRE 2R

® SEDIT1YNIHWNT, SN MELSLTEET I FAINE/NHEN RANS
BERIIFHEDEBINY. T TINEIREEEZBND

® Future Work
o AN\ NCLDBIELEFRII—4y hDt&ST - ZDFRIETIBEDIR ST
o ¥EREMNELLINE. BAR/BHE. FFEEEMERT - DB ER

©2025 Fuijitsu Limited
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SR ERERXB(COMS)ITH TR EESHRBROIMNELTDFEA
Collection and Utilization of Satellite Anomaly Information within the Coordination
Group for Meteorological Satellites (CGMS)

rBE ¥
ool E T 7EReMs BRI TERT T BRI IR =
T. Nagatsuma
Space Environment Laboratory, Radio Research Institute
National Institute of Information and Communications Technology

1. I IEDIZ

LSRR (COMS) 1. FHb RS -
FHREBIZ1T 5 FEOKEGY T HERER TR <
NAHEREa =2 7 A THY, 1972 FICRIS
iz, T, FHREKBHA~OBG™HE Y |
2018 fEIZIXFHRESMEI V—7 (SWCG) 23
POk & L CRRIE Sz, CGMS/ISWCG T, &
22 b OFHRZEIRC, FH R M=
b 72 BT EE OB O EORBICE T 5
B2 eFPRICHR D FLA WD, BT AFHRERICE
K9~ 2 2 fRE TG R OUNEE & 2 OFE Az AT 72 B
DHREADHED HITND,

2. COMS R/ N—F (SWCG) DiESh
1IRTIRY . COMS/SWCG 1T D & 27 7

— 7 H L FEEENROIE &7 — 2 <—21L,

FHRGET —2 7 7 2 20, GPS ks
BgE b7s & OIS A R L T\ D,

1 CGMS/SWCG o>#Ei#S: & BSiEEE)

COMS TITFRE AT TH NIRRT E 1
FEHOFEEFEERORE ZHLEL TR D, SATG
Tl CGMS INHRRERAN B X415 2015 LI DT
SEPEERGR AL - BB L, COMS 7 =7 A R T
AP LTCWA, URLIZEL RO,

https://cgms—info. org/wp—content/uploads/2025
/06/CGMS—Spacecraft—Anomal y—Report-Database—C
GMS53-23-May—2025. x1sx

4 2 | R EFEFRT — A N—2AD Vs &
Y, BREEGRIIR A AT — 7 A —I Tt
LTHIETH Y, BRDFEFEDRD HIL TN D,

2 mEREFERBOES Y

3. SEE REAFEL L TOEDAC T—# DIEA

SATG TlE, frEFEEFHROMIZ EDAC (Error
Detection And Correction) T —& DIVEE « JEFIC
DONT BT L TN D, EDAC | IR r g - St
SNTWDIEFRRVETIEEE CH D, =T —DEIK
LLTUIE =R T =R LD T AR
W (SEEs) BB X HivD, Z D7, EDAC T —
HZaWDZ & T, FEREHEERR IR % SEEs @
EBDFUIS D T2 b ORI 21 T o 7=,

A TR R AT U 72 BRN A S 4 22 B 8 R A
(EUMETSAT) @ Metop—C, Sentinel-3A, Sentinel-6
D 3 HEOIEIERTRDE TTA R 1 ITRT,

=1 REEDET

BEA BESE BIEIERA
Metop—C 817km 08.6 £
Sentinel-3A 802-806km 98.7 &
Sentinel-6 1, 336km 66. 6
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https://cgms-info.org/wp-content/uploads/2025/06/CGMS-Spacecraft-Anomaly-Report-Database-CGMS53-23-May-2025.xlsx
https://cgms-info.org/wp-content/uploads/2025/06/CGMS-Spacecraft-Anomaly-Report-Database-CGMS53-23-May-2025.xlsx
https://cgms-info.org/wp-content/uploads/2025/06/CGMS-Spacecraft-Anomaly-Report-Database-CGMS53-23-May-2025.xlsx

<] 4 12 Metop—C @ EDAC A X b DFAS5A1 s
9, ADENL, Fp HE5HEEZR EDAC A~ |k
ThHHZ EERLTND, FARNDEREED 22
T EDAC A X2 hOFAENBEFE L TUND Z L3
%, o, FNLSOFEBIZENTE, A b
FAEDNR NG Z N5,

4 EDAC A R b 54537 (MetopC)

5 1Z Sentinel=3A @ EDAC A X b DFAS3Af

g, Thbb, K4 SIRFEFERROIZ LT

B, 7T VNS RERIGPE EZE DR AR T

PAND & ZALIS DR COFEEBIEN Metop—C
L0 b2 EBRTERNS,

5 EDAC A4 R FFe44r%a (Sentine|-3A)

6 EDAC 4 R FF4E5 7 (Sentinel-6)

612 Sentinel-6 MEDAC A X MEAAIZRT,

THBIE, 4,5 LD &A N ML
2o TG ZERRTHILD . AT RRREED
SRIRPEE, £ L ORI &R ARSI L
Tb \éo

4. PTER LB

3 SOIEHERTED EDAC A~ hDOZERARIC
DTN 24T > 72, 3 2D EDAC A XY NI
B R KEED HFERVELE EZETEFAELTW
HZ EPMER SN, —J7, FOEKOIA S IR
HZH T2 > TND T E D337 5T, EDAC A X 3
BRI ZHAT DR ODIE S DT, R O#LE S
FEEDOBNUEIFE L TNDEEX B R D, X TIIEE
DRI HHEREIC L D 0.6-1. 2MeV DOEFT RV
X —EB IO E R LTIZbDTHH[1],
AR FHE R 700km O ALOS f2, A1 IHE S
JE£ 1, 336km @ JSON-2 2 T 5, #aEREI <
725 L SAA OFEERBMER L TWD Z ENG0D,
Z DRIA-GARORAEIEX 4-6 2% L7z EDAC A X
N OFATEIROEEFEIC L AENE BIEA LT
FV (EDAC A X hOFRENREH RN —RI -7 T
v 7 ADGAE BUVHBZ LD LTS Z L3 A
T 5,

1 FEHIRRAHAN 517 o f- SM OEEKRFE

X8 EDAC A N> DRSS IEEXTEE Metop—C)
Metop—C @ EDAC A Xk DF&AaPk A Hifse <k

Efic7ay bLEBOEK 8 1T (H L, SAA
DRIP4 72D HERRRET-45 B D 10 FED
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T—RIRE), ZDOTTTINBIE, A—a T
YT A—a THICRAEDE— I BNRLND Z LN
35 HL, BRI OWTIE. FTED R
WA AR BT DB TR L L7z ECikia g
1THOVERDH D,

5. ¥&¥

KGRI (COMS) WOFHRKFHE 7 v
— 7 (SWCG) 12T, FHH DB OFH KRB B
T HRE & RTERICIR D A TN S, 7. KSR
DT )< VIEROIUE « 7—H X—21{k, FFERIC
A TN,

EDAC A > b OfESEL & B RPEEER F RO fEs kI X,
BERFEE SR TR —EERL TR,
EDAC A X FOFERFK A m= /L F—71 K
v EMeV M HEE MeV) Th D rlHetEz e LT
W5, ZD7=, EDAC T — X |[Zid|mT ¥ —7n
o DR OIEEL L TORIATEX5THA D, £
72, EDAC 7 —& I DHEE X415 SEEs OFSAESEE &
R OHEE 2 Hlie 95 = & T, iREt o4Ok
AR TE D THA D,

—J5. Wl T34 5 EDAC A XV h Dt AfHE
PED N VFERIN TS FHERRTE0N, Balr O K EEInR
KEAZ R DM A < b & EGTeRR K&
@ BDAC A RV hTF—H &N T, FHRKA N
~ & OB Z R HNZ T 2 TR D D,

FHZ, CPU & AE Y OHIRIEORHI, 35 KL OV
BEFEOBIEN Y A7 1%, BT —%t& v F&HN
C EDAC A X2 s OBEFEDRFRFHER O HTIZ L -
TRHICX5THA 9,

INLDOEREKEZD L, FHRAKHSL
CPU » A€V O 7 —DKIHIER, BILUIEDE
TEH) Y A7 095720, < OfENHELN
HEW EDAC T —2 NI T2 EEE L
VY,

SEIR

(1] /Rt A, s —, oo,
Fesa, kA, BOEETE, JAXA ICHIT AT HERR
FHAOBLR, 557 ] FHERER S AR YT L) G
FRSCEE, p. 196, 2010. FHATZEA SRR R G
kb JAXA-SP-10-013.
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Study on the Spacecraft Design Suitability of New Van Allen Radiation Belt Models

Shinichiro Ichimaru and Yugo Kimoto (Japan Aerospace Exploration Agency)

Key Words: Van Allen Radiation Belt, IRENE, AE9/AP9, AE8/AP8

Abstract
The AE8/AP8 model simulates the Van Allen Radiation Belt model and is currently widely used. However, IRENE,

including its successor AE9/APY, has been released. IRENE expands the orbital region and energy range by utilizing more

satellite datasets than AE8/APS, and its future use is expected. However, to effectively utilize the new model, a thorough

understanding of its specifications and performance is necessary. This paper describes analysis results using IRENE,

compares them with AE8/APS, and outlines future plans.

1. #S

MR AHMEEEZSERELZET L E LT,
AES/APSNH VY, BIfE, ZhENAZ A —REL
THFHER AV SN TV S, NASA 2¥EITLT
VN % SLS-SPEC-159 CROSS-PROGRAM DESIGN
SPECIFICATION FOR NATURAL ENVIRONMENTS?

(LLF, DSNE) (ZBWTh, flitEBSMaET LR
EFRINEBY, ﬁé;&zﬁ 5 AES/APS 2MESE X Tz,
— J7 T 2020 #FEAT I 7= Revision H X ¥,
International Radiation Environment Near Earth®? (VLT
IRENE) OFJHbH#ERINL L Ok T-.

AE8/AP8 1Z, TITNASA DF—F v v FaflifL
THY, MEORFHIBWTHEWBERR L, BED
?777%25V&%Fkbfﬁ%éhfwé.b
ML, BT MIC K DRSS R EEO U BB B
TNRHDZ L BBEFERN LN TETND Y,
ZNIZHK LT, IRENE X AE8/AP8 D#% MM TH 5
AEBY/APY ZF¢h, FHT 7 AET L HEATWND.
IRENE 14 33 Ofi207—4t > h2FIALTEY,
AE8/APS LV bZ < ODWEDT —4 &y MEFAT
52 LT, #LEME L kL X —FiPH 2 AES/APS X
DHIEREETWS, £, #ieZeTs—4 &y &R
NIATLZ LN TE DML Ao TRY, T—XDT
v T — RRAREIC > TWA. LsL, HTLWET
Vv fif Lﬁ%%ﬁ%% WEAL T IZhizo>TE
AR - MEREZ T ICiBiR L, BHRICK D Eo X o 72T
—X %:m'shb ZEANCEML TR LERH D, £
Z TARETIX IRENE & AE9/AP9 % FH U 7= iR s 5
& AES/APS & O Lhillshl & g

2. fEMTH

ARFFE T, 1SS B, Jason-3 #iE, QZSS #LED
3 DOGEIZI N THENTZ %06 L 7. IRENE (X 3 D
DOEFT/INE—F (Mean E— F, Perturbed Mean & —
K, Monte Carlo E— F) ZF->TEbVH, ZhEho

— NOZERGIERTIOIMLERNHLH7T-0, TNHD
E— NCHNTZFEET 5 & & HiZ, IRENE HITHEHE
9% AE8/AP8 (Solar Maximum) T & fif# % 2Hi L 7=.

« Mean : EHIW 27 T v 7 A~y T EMHH

- Perturbed Mean : FHIRRA O 2B H CTHEE D 272
57T I ARy T T H NAER

* Monte Carlo : FHARRZEDEBFEFIZIN 2 T, FH K
R ORBEE) - Hifgh <R DB CHED R 2
7T ATy T T o H DR

# 1 IRNE Okt &t

HliE X A Two-Line Element (TLE) File %

A it

Input File ISS (ZAYRA), Jason-3, QZSS
@ TLE

(PN SatEph

FTEIYIH 2014/6/1 0:00:00 -
2015/6/1 0:00:00

e ALlE 60 b

U A 100

77 w7 A7)V | Integral

TUREATS

GG 1 H
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7% 1 |2 IRENE O G152~ ENENOHEE
$R1% Two-Line Element 2 L, FFHEHARIIKEGE
I D 1 4 (2014/6/1-2015/6/1) & L7~

3. RHTRER

1 12 ISS #iE 231 % T+ Integral Fluence,
212 1SS #LEIZH51F D B 1- @ Integral Fluence D fEHT
iR A Rd. 1SS #LBIIMEUE, #UEEE 400km, L
BEHEAAE I S16 ETHD.

1 IZRTY, T Fluence (28 TlE, AE9
Mean (F-#4J), AE9 Perturbed Mean (50%), AE9 Monte
Carlo (50%) @ 3 SOEF— RIZERITIR LN -
7=. L2rL, AE8 ®Jin3, AE9 £V, 1~5MeV D
PHIZ BT, K& 72 Fluence 278 LTV 5 Z & D3
RIND. AES OET=RAF—M (5MeV LLE) &
AE9 OTEHEY, ZNTNOETANRHN—F 5T

VX —HERLT — SO LD bDEEIDBND.

2 \ZRT Y, BT Fluence IZBWTH, AP9
Mean (), AP9 Perturbed Mean (50%), AP9 Monte
Carlo (50%) 123 DDE— RIZERITR 5T, APS
H B EIFIEF U Fluence %78 L7-.

72%, Jason-3 BLEIZH VT S ISS H3l & [FIEE D

&7 L7c. € D720, AR TR RITEI$ 5.

312 QZSS #EIZ 31T B T D Integral Fluence,
4|2 QZSS WLEIZI5 1S D B+ Integral Fluence @

1 ISS #iEIZ331F % &1 D Integral Fluence

2 ISS HUEIZIIT D 151D Integral Fluence

FERZRT. QZSS I, MERTEWLE (IR
BRE 135 ), BAOE IR, UTHILS 32,600km, 3 AL
38,950km, WIEMEAMAILA 41 BE, BT 23 KR 56
SFOEETH S,

3T Y, QZSS #liE D 1 Fluence I % AE9
Mean (F#J), AEO9 Perturbed Mean (50%), AE9 Monte
Carlo (50%) @ 3 DDOFE— FICER IR SN0 -
773, 1SS, Jason-3 #iiE & B2V, AE8IZZINH LY
/NE 72 Fluence 7= L7-.

4278 Y, B+ Fluence IZBWTIEBFD &
TRNAX—ROT =T Sz oiz. Zhid,
QZSS IINHHEH RN EB X HND. F1= APS
DF M AP X 0 BHEEI/NSfEEZ R LTEY, IMeV
PlEoTF—2 i3RI nignolz. Zhix 1SS X
Jason-3 BE & B2 DHERTH S.

4. Bbyiz

AE, fEfrLiz 3 DOEEICEBWT, AEY/APY
Mean(*F-¥J), AE9/AP9 Perturbed Mean (50%) , AE9/AP9
Monte Carlo (50%) @ 3 SO RIZZER TR LN
TRinoTlzly, AE9 & AE8, AP9 & AP8 & OFEIMER
Sh7-. AEY/AP9 D775 AES/APS LV &, = R/LX
—HFENIRWHAREE R TV DD, BTICEWT,
AB9 (FET R AT BN TE T 7 v h DR
BN, ABSIZBWTIIT — 2B E&hizhoT-.

3 QZSS #EIZE T B FE T D Integral Fluence

4 QZSS fLEIZH T 5 BT @ Integral Fluence
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# 2 IZHHEICET S AES/APS & AE9/AP9 & Dt
R AR T, & 2 1”9 @ Y, AES/APS & AE9/APY
EDOEIFTIGEIC L Y B b7z, MOfIEICKS T
LAEROWEEZIT O BERDH D L L b, HEHKA
DEDIZEDEITHESI D, EoE—REFEHTS
D, FTRT A= EEIRET HNE, Sk, B
HDHRPMMBIETHSL. MA T, ET—F LEDERNY
DRREHLPBHEEEL TOW BERH 5.

2 £fEICB T D AES/APS & AE9/AP9 L O Hhik

LIRE H 1 (1-5Mev) b5+

ISS AE8>AP9 AP8 AP9
Jason-3 | AE8>AP9 AP8=AP9
QZSS | AE8<AE9 AP8 (AP9

TDD, Stk, ET—F LD EITOZ LT
. BREICIE, FHEREHI Yy v a VEE

(SEDA-AP) O & = /L X —IRI1-F = % 9(SDOM)
\Z & 28U —# L IRENE (2 & % £ 10
Fefge 217 5. SEDA-AP | 8 FiSE O #i#es 2 FH T
1SS A& Bl 2 il O FH BB A Bl L 7= BLHI%E &
THY, 200048 AMND 201843 AF T IXIFH ]
W ERT T v b7 — L2 TEASNZ. TOHHE
gD —>TdHh 5. SDOM [TEBSLAMEI D HLRE
e OMENELEORIR E 25 E T, BT, o EDOR
TRV — BRI ORI TR RV X — o3 A A FHE L
TWb 7=, 4%, SDOM O#HIT—4 & AE9/AP9
DFRFTE RO 21T O Gl & 5.

BE W
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“Global Space Weather Warning System”...

How do we avoid/mitigate space weather disasters?
e Space/ground based Observations

* Prediction with Simulation/Artificial Intelligence

» Useful and appropriate Alert
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Space-based Observation

SOHO
1995-now

ACE
1997-now

DSCOVR
2015-now

SWFO-L1 plan
to launch in
2025

Current and Future SWx Observation

Vigil Plan to Launch
in 2031

Korea Plan to Launch

/

2012

SOHO CME image observed on Jan. 23,

Importance of CME measurement from L4/5

The precision of arrival time estimation will be improved

significantly.
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Satellite observation near the Earth (Operational)

* Many recent meteorological
satellites has space environment
sensors for monitoring space
weather.

* However, the sensor on board
recent HIMAWARI is for house
keeping which means the
performance is not enough, so
Pacific region has been vacant area
for monitoring space weather.

Satellite observation near the Earth (Operational)
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Numerical simulation and Al for extending lead time for
prepardness

Nishizuka et al., 2017,2018, 2021

~24hours
:lj

Monitoring SWx phenomena with ground-
based observation
Ground based observation has the longest history

for monitoring space weather, but global
coordination is still not enough mainly due to;

* Diverse Agencies and Priorities

* Lack of Unified Data Systems

* Heterogeneous Instruments and Data Formats
» Geographic Distribution and Coverage Gaps

* Operational vs. Research focus

* Data sharing and Open Access

* Funding and Resource Allocation

. . . . . . Drawed by Gemini
It is necessary to coordinate by international organizations, but...
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Primary area of organisations’ expertise

COSPAR
ARCSSTE-e SCOSTEP

Research &
Development

space-based

URSl-general csa  NASA IAGA-General
NSE ALAGE

ground-based

eCallisto

IAGA V-OBS
WDC SILSO
NSO-GONG

IAU WGCSOS

URSI-INAG
ISWI AOSWA

AGATA-SCAR

IAGA ICSW

Operations
& Services

GISTDA g tPeTMAG
UNOOSA  INPE

Facilitating
Integration

WMO-ISES-COSPAR Coordination

* Letter from UN Office of Outer Space Affairs (UNOOSA)
dated on July 1, 2022 by request of the Committee on the
Peaceful Uses of Outer Space (UNCOPUOS) and its
Scientific and Technical Subcommittee (STSC).

* COSPAR, ISES and WMO are invited to lead efforts to
improve the global coordination of space weather
activities in consultation and collaboration with other
relevant actors and international organizations.
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Space Weather International Coordination Forum
(Nov 17 2023, Geneva)

Anticipated outcomes include:

* An outline of the international space
weather landscape identifying primary
expertise of each organization
represented in the Forum

* |nitial Discussion about the coordination in;
* Space Based Observation
* Ground Based Observation
e User Engagements
* Plans for interfacing with organizations representing major user groups
* Approach to alignments with national strategic planning activities and funding programs
* Plans for join projects to demonstrate the value of collaboration and coordination

Establishment Plan of “Global lonosonde
Operation Network (GION)

Aim: establish the international comprehensive o
organization who work for lonosonde communication

observation/operation as a member of ISWCF.

Structure: group of the representatives and liaisons of

existing organizations

Function:

e Work as the representative of lonosonde
observation in ICFWS: input opinions as ionosonde
community and spread the information discussed
in ISWCF in ionosonde community

e Discuss coordination of ionosonde network

e Data sharing with WIS2.0
¢ Registration of Observation: New digisonde
and registration of the URSI station code

Global lonosonde Operation
Nepwark (GION)
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Current and Future structure of SWx
observations

ISWCF

communications

Ground-based Space-based
observation observation
|
lonosonde _
CrateHese GNSS Etc. CGMS ?
GION Magnetometer
INTER-MAG? Operational/ Research and/or
How do we Meteorolo outer space
extract SWx use . gy P
satellites ILWS?
from whole L
On the vicinity of

GNSS functi ?
unctions the Earth

International Agency Space Weather Coordination
Group (IASWCG) led by J. Spann

¢ Analogous to the International Agency Coordination Group (IACG) from >30 years ago, that
gave birth to the original ISTP — IASWCG is a space weather version of IACG.

¢ JASWCG is a forum where agencies that fund space weather missions and research can come
together to share their plans and coordinate missions/research relevant to space weather

¢ Agencies use community efforts as part of their decision-making process (e.g. ISTP-NEXT,
COSPAR ISWAT, Decadal Surveys, existing roadmaps, strategies, and gap analysis).

¢ JASWCG enables minimization of duplication and identification of observation-mission-research gaps,
and it promotes global collaboration where each agency participating to the extent they are able.

¢ |ASWCG complements the existing operational space weather coordination efforts of the World
Meteorological Organization (WMO) and the Coordination Group of Meteorological Satellites (CGMS).

¢ The IASWCG concept is consistent with the COSPAR ISWAT Coimbra Declaration and the UN
COPUOQS Space Weather Expert Team recommendation document, and is part of NASA's space
weather strategy and implementation.
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Summaries

* International framework for Space Weather Research, Development and
Operation is now changing significantly.

* The comprehensive ionosonde observation/operation network group in
the world was established in March 2025. Following this action,
(probably) similar group for GNSS and ground-based magnetometer is to
be discussed.

 Coordination for Research-based and/or outer space observation is now
one of the hottest issues. Two candidates, ILWS and IASWCG.

* \We need to discuss and decide the attitude to this action.
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9 FHEEY VAR T A MEM-JHS-003984 Rev.0 (PSNN-2025-0793)

FHERHESFICHEITS
T IWERALLINLIVT YT BERICEET 2R R

IR BB T, R T HBIRRRESR Y MEATREDL Y EHEFEE
EEE 2, EEE L ORARA L B
TS = R L X — 3 AT L AR,
2ENZAFIEBRFEIE N T T PR FE B A

AWFEIL, FHEARESCBWTRAET DA T v 7RG % ) T VE A JMIGBEST 28727215 5L
BHEIMRORRBE L BN L T2, 1k, FHMROGG 7 7 v 7 ARE T Cld, BEEORLF DN ERFH IR 2~
AT 2L TREEPEE L, BRI 3 —HENSNEE & 2 288808 H > 7c, AWFZETIE,
BB DOTRFFEICE R L A NVT v TR EEHRIEITRAGR E L TERE L2 LT, ¥ = & (Jacobi)
B L DRERITREZ AN T VT ) X LZ2RFE LT, &6I12, BRI L TORB 2R L7250l
Yz b—vay, ERERBEE SIS XL ENEHME, IERS E— AT X b &2l U TAFEOR IR
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FHR B W TEE OB 7 2N E R I A ST
HZ LT REBERNEET D/ M IVT v TERHPHE
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HRESEESS (CSA) ICL v~ EfIns, &
DICZE DI F X HEIESS (Shaper) (2X - T,
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Abstract

We develop Al-based 1-day-ahead prediction of proton and electron fluxes in LEO to support spacecraft design and
operations, using ISS SEDA-AP/SDOM (2009-2018) and NOAA data. SDOM gaps were imputed via mean, linear, spline,
Kalman, and seasonal decomposition; validation with a Dst index predictor showed seasonal decomposition performed best
(RMSE 11.915 vs 12.290 with NOAA-only). With seasonally imputed SDOM, we trained linear regression, multilayer
perceptron, and xgboost; xgboost achieved the best accuracy: electrons (0.93—1.85 MeV) RMSE 1.076 overall (1.139 during

flares) and protons 0.413 (0.925 during flares). The forecasts can feed charging, single-event effect, and total-dose

simulators for margining and hours-to-day-ahead risk assessment. Future work targets a 3D flux model including altitude

dependence.
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Effect of Proton Irradiation on the Volume Resistivity of Spacecraft Insulating Materials
Kaisei Enoki*®, Shinji Saito™, Tsutomu Nagatsuma*,
Hiroaki Miyake™* *, Yasuhiro Tanaka™ *

To accurately calculate the charge accumulation on spacecraft, it is essential to investigate the volume resistivity of
insulating materials. In this study, we measured the external circuit current density of a multi-layer insulator commonly
used in spacecraft to evaluate changes in volume resistivity under proton irradiation. The results indicated that the
volume resistivity changed by several orders of magnitude depending on the proton irradiation dose rate.

F—T— R (KEEERGUR, TR, MERME. HURRS RS, B
Keywords : Volume resistivity, Spacecraft charging, Insulating material, Radiation induced conductivity, Proton beam

1. [XL®IZ

BRASOFEHSC Y — ERAIATHESOFEH A 7T
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Abstract

Coronal mass ejections (CMEs) are significant transient events involving large eruptions of magnetized plasma
from the Sun that propagate through interplanetary space and can trigger substantial charging on the lunar surface,
affecting the movement of lunar dust via electrostatic forces. In this study, CME events from May 8-21, 2024 are
examined by focusing on their impact on surface charging and electrostatic dust lofting over the lunar terminator region.
Initially, upstream plasma parameters and interplanetary magnetic field (IMF) conditions are characterized for the solar
wind during this period. Subsequently, the lunar surface potential, Debye length, and electric field distributions are
derived through current balance simulations at the terminator. In addition, the trajectories of 0.1-um dust grains,
initialized with specific surface conditions, are estimated to evaluate their maximum lofting altitudes under the
electrostatic environment of the terminator region. The resulting terminator electric field values are then compared
with geomagnetic indices (Dst, SYM-H, Hp30, and ap30) and solar wind parameters, including IMF components,
dynamic pressure, clock angle, and motional electric field. Finally, the results are presented to assess potential
correlations between geomagnetic activity and enhanced near-surface lunar dust populations.

Keywords: Lunar dust, electrostatic charging, geomagnetic activity, dust lofting, solar wind, coronal mass ejection.

1. Introduction

Earth-Moon system affecting solar transients include
wide range of events driven by solar activity. These
events occur over shorter time periods near the Sun
compared to the disturbances they generate in Earth’s
magnetosphere [1], and they affect the geomagnetic field
and the lunar surface in distinct ways. Since the Moon
lacks a substantial atmosphere and a global magnetic
field unlike Earth, its surface is directly exposed to the
solar wind and other space weather events. Consequently,
the lunar surface is highly responsive to solar transient
events such as coronal mass ejections (CMEs), solar
flares, stream interaction regions (SIRs) and solar
energetic particle (SEP) events. This exposure leads to
complex interactions between upstream plasma and the
lunar surface, resulting in lunar surface charging and
electrostatic dust lofting.

The ambient plasma parameters vary between
geomagnetic tail crossings and solar wind conditions,
causing the lunar surface to charge to an electric potential
that minimizes the total charging current as other objects
do in plasma environments [2]. In addition, the lunar
surface is covered by a soil-like layer called regolith,
which is a mixture of dust and fractured rock particles.
Even though there are multiple sources for dust activity

on the Moon, electrostatic dust transport could play a
significant role in the near-surface dust population.
Understanding these processes, from lunar surface
charging to electrostatic dust lofting, is critical for future
lunar missions, particularly for mitigation of the risks
posed by lunar dust, which affects both spacecraft
equipment and astronaut health. Although similar
processes occurring on the lunar surface could be
examined in laboratory settings, the lunar dust particles
formed by impact events are significantly sharper than
the grains in experimental regolith simulants [3].
Therefore, they could adhere to surfaces more strongly
on the lunar surface compared to the laboratory
experiments.

During the Surveyor and Apollo missions, light-
scattering observations suggested higher dust densities
near the lunar surface than those expected from
micrometeorite ejecta alone [4, 5, 6]. Therefore, it was
proposed that electrostatic forces mobilize the charged
dust grains on the lunar surface, and forward-scattering
of sunlight to the night-side was responsible for the
observations. Moreover, the image analysis indicated that
dust particles with radii of 5-6 um rise to the heights of
approximately 30 cm particularly following the passage
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of the boundary region between the dayside and night
side known as the lunar terminator [5, 6, 7].

Geoeffective CMEs and stream interaction regions
(SIRs) can influence electrostatic lunar dust transport by
disturbing Earth’s magnetosphere. While it is known that
these solar transients significantly alter the solar wind
flux and the lunar plasma environment, the extent to
which they impact lunar surface charging and dust
movement is not fully investigated. In addition, although
geomagnetic responses in Earth’s magnetosphere have
been well studied, the behavior of the near-surface lunar
dust exosphere during the same events remains largely
unexplored. Solar cycle 24 was characterized by its
relatively weak solar activity [1]. In contrast, currently
progressing solar cycle 25 is exhibiting more robust solar
activity, with sunspot numbers increasing at a faster rate
than initially forecast. In addition to impacting cis-lunar
environment, these solar transients are main drivers of
geomagnetic  activity, often accompanied by
interplanetary shocks and high-speed solar wind streams
[9].

In this study, the CME events from May 8-21 2024
are examined via their impact on lunar surface charging
and electrostatic dust lofting over the terminator region.
In addition, the results are compared with geomagnetic
indices (Dst, SYM-H, Hp30, ap30), as well as solar wind
parameters including IMF components, dynamic
pressure, clock angle, and motional electric field.

2. CME Events on May 8-21, 2024

Fig. 1. Solar wind parameters from May 8-21, 2024:
number density of protons and electrons (top), solar wind
bulk velocity (bottom).

The CME events from May 8-21, 2024 were
characterized by significant fluctuations in solar wind
parameters, including density, velocity, plasma
temperature, and IMF strength (Figure 1 and 2).

Fig. 2. Solar wind parameters from May 8-21, 2024:
temperature of protons and electrons (top), total and z-
axis component of IMF (bottom).

While CMEs propagate through interplanetary space,
they encounter slower solar wind ahead, resulting in
lower speeds than those observed near the Sun, causing
them to decelerate before reaching the Earth-Moon
system [10]. In Figure 1, with the approach of CME to
the spacecraft location, solar wind speed increased from
approximately 410 km/s to 780 km/s before peaking at
around 1,023 km/s. In addition, solar wind number
density reached up to 57.0 cm?, and proton density
spiked during the passage of the CME structures,
indicating the arrival of dense, magnetized plasma ejecta.
Electron temperature peaked at 25.6 eV, while proton
temperature reached approximately 152.9 eV. The IMF
strength peaked at approximately 69.8 nT, with a
southward component (Bz) reaching -54.6 nT,
conditions which could initiate major geomagnetic
disturbances. The increase in the IMF magnitude, solar
wind speed, and density was nearly simultaneous around
11UTC indicating the arrival of the CME.

3. Lunar Surface Simulations
3.1 Lunar Surface Charging

In steady state, the net equilibrium current to the
surface can be given as [11, 12]:

Jre tJit]etJsee =0 (l)
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By using Eq. 1, the surface potential @, could be
estimated according to the ambient plasma conditions.
The elements of this equation are the photoemission
electron current Jp,, ion collection current from ambient
plasma J;, electron collection current from ambient
plasma J, and the secondary electron emission Jg,.
from the surface. In addition, the surface electric field is
calculated with E; = 9./l [12], where [, is Debye
length. Therefore, the upstream plasma number density
has a critical influence on the surface electric field in
addition the electron temperature.

Fig. 3. Surface potential, electric field and Debye length
from May 8-21, 2024 over the terminator region.

The negative surface potential drops to —92.1 V, as
shown in Figure 2, while the surface electric field reaches
approximately —13.2 VV/m. During the CME shock, the
Debye length ranges from approximately 4.3 m and 8.0
m.

3.2 Electrostatic Dust Transport

The assumptions and calculation steps used in the
simulation code are described in detail in our previous
studies [13, 14, 15]. The primary mechanism for the
electrostatic dust detachment from the surface is the
charge accumulation on the patch surfaces between the
neighboring dust particles [16, 17]. The accumulated
charge on the patch surface Q,,,, as shown in Figure 3,
during the detachment is calculated by the Eq. 2. In this
equation, the following parameters are used: electron
charge e, characteristic size of microcavity s, vacuum
permittivity &y, the differential force among electrostatic
repulsion, gravity and contact at detachment AF, and the
lofting angle from the surface 8.

_ § megAF
Om = —e le, c059‘+1 2)

The surface configuration of the lunar regolith
significantly influences the initial conditions for dust
lofting. The characteristic microcavity size between
patch surfaces, along with the contact forces determines
the charge magnitude under detachment conditions in
addition to the dust particle mass density. In addition, the
contact forces are affected by regolith compactness,
contact area, and surface cleanliness. Therefore, a wide
range of conditions can be simulated for dust lofting as
in Figure 5.

Fig. 4. Lunar dust charging before the detachment from
the surface.

Fig. 5. Electrostatic lunar dust lofting: (1) dust lofting
after initial detachment, (2) dust grains with sufficient
kinetic energy to cross the electron sheath boundary, (3)
micron-sized dust grains returning to the surface with low
charge-to-mass ratios, (4) dust grains falling back to the
surface under gravity after entering the electron sheath,
and (5) submicron-sized dust grains with higher charge-
to-mass ratios that may be reflected by the surface
electric field.

Fig. 6. Dust lofting results from May 8-21, 2024 over the
terminator region.
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In this study, the following parameters are adopted
for the simulation: a dust density of 3.0 g/cm?, a grain
radius of 0.1 pm, the dust grain diameter as the
characteristic microcavity size, and a vertical lofting
configuration for the initial launch angle. The results,
shown in Figure 6, indicate that submicron-sized
particles can reach altitudes up to 382.8 m above the lunar
terminator during the CME shock passage. For most of
the simulated time interval, the particles remain below
100 m, but they reach up to 190.2 m under enhanced
surface charging conditions associated with increasing
plasma density.

4. Discussion

During the CME post-shock passage, highly
magnetized, warm and dense plasma produces a strong
negative surface potential and electric field over the
terminator region. As a result, it could also enhance
contribution of the electrostatic dust transport to near-
surface dust population. The surface electric field over
the lunar terminator is shown together with the
geomagnetic activity indices of Dst, Hp30, ap30 and
SYM-H in Figure 7.

Fig. 7. Lunar terminator electric field with geomagnetic
activity indices

As the negative surface potential and electric field
intensify, lunar dust is observed to reach higher altitudes
above the terminator region, as illustrated in Figure 6.
Additionally, the terminator electric field results are
presented alongside the solar wind cone angle, clock
angle, motional electric field, and time derivative of the
total IMF in Figure 8.

While geomagnetic indices show that activity persists
for several days, disturbances in the lunar terminator

region diminish rapidly as electron temperatures decrease.
Although geomagnetic disturbances and enhancements
in the lunar dust exosphere can occur concurrently, the
near-surface dust population can return to quiet
conditions significantly earlier than the geomagnetic
field. The initial observations from the results can be
summarized as:

e  The lunar surface and dust exosphere respond almost
immediately to solar transient events, although the
magnitude of the response varies.

e Electrostatic dust lofting can enhance or expand the
lunar dust exosphere at low altitudes, particularly as
geomagnetic activity intensifies following the
passage of post-shock plasma, with the most extreme
conditions observed near the shock front.

e Due to the rapid response of lunar surface charging
to plasma conditions, extreme states subside quickly,
and the surface returns to a quiet state even while
geomagnetic activity persists in storm conditions.

e While electron flux primarily governs the charging
conditions at the lunar terminator, geomagnetic
activity is largely driven by the southward
component of the interplanetary magnetic field,
whether in the shock sheath or the CME ejecta
region.

Fig. 8. Lunar terminator electric field with solar wind
parameters

6. Conclusions

In this study, variations in lunar surface potential,
electric field strength, electron sheath thickness, and
electrostatic dust activity is compared with geomagnetic
activity from May 8-21 2024. The primary objective is
to identify critical patterns and thresholds that lead to
significant dust lofting events. Additionally, the temporal
dynamics between the onset of geomagnetic disturbances,
their progression, and the return to quiet conditions, in
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relation to corresponding changes in lunar dust behavior,
will be thoroughly examined in the future study. This is
significantly important since the solar transient events
directly interacts with the lunar surface; however,
charging the lunar dust to a sufficient magnitude for
launching or triggering a geomagnetic activity requires
varying time periods during CMEs or SIRs.
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Abstract

This study presents a hybrid dust mitigation technique that combines passive and active methods to remove silica dust from
solar cell surfaces under vacuum conditions. The proposed system integrates three key components: a Polydimethylsiloxane
(PDMS) surface coating to reduce adhesion forces, a pulsed electron beam to electrostatically charge dust particles, and a DC-
biased grid to generate an electric field that lifts and removes the charged particles. The hybrid configuration achieved
approximately 90% cleaning efficiency and power recovery, significantly outperforming the active technique alone. However,
minor challenges were observed, including partial shading from the PDMS and grid alignment effects. Proposed improvements
include the development of a deployable grid and optimization of PDMS thickness to reduce optical losses. Overall, the hybrid
approach demonstrates a promising mitigating dust accumulation on solar cells.

Keywords: Lunar dust charge- Mitigation technique- Electron beam irradiation.

1. Introduction

Lunar dust presents a significant challenge to the
performance and longevity of equipment on the Moon,
particularly solar cells, which are vital for powering long-term
lunar exploration missions [1]. The lunar dust, known as lunar
regolith, can degrade the efficiency of solar cells by
accumulating on their surfaces, blocking sunlight, and creating
barriers for charge carriers. Lunar dust caused numerous
operational challenges during the Apollo missions, most
notably the reduced efficiency of solar panels. For instance,
experimental and analysis results of Apollo mission showed
that dust accumulation on solar cells reduced their power output
by 50% at dust levels of 3 mg/cm? [2]. Additionally, smaller
dust particles further degrade the efficiency of solar cells. These
effects underscore the critical need for effective dust mitigation
strategies to preserve the functionality of solar cells in future
Iunar missions [3,4].

To overcome this problem, mitigating Iunar dust
contamination is critical for sustaining long-term lunar
operations and ensuring the efficiency of technological
infrastructure. Dust mitigation strategies are broadly
categorized into two main types: active and passive, The Active
method involves external energy input to remove or repel dust;
However, Passive methods focus on preventing dust adhesion
using surface coatings and material properties rely on inherent
properties of materials or coatings that allow for self-cleaning
or resistance to dust accumulation without the need for external
power [5-7].

In this experimental work, we are trying to restore the solar
cell electrical performance inside the vacuum chamber after the
contamination of the dust on its surface. The dust removal
technique combines high-energy electron beams and
electrostatic charging to clean the contaminated solar cell
exposed to lunar dust. Using an electron beam to remove dust
particles from sample surfaces has been investigated as an
active dust mitigation technique. The method has shown

effective results when applied to optical lenses and spacesuit
fabrics; however, it exhibited notable limitations when used on
solar cell surfaces, as reported by Farr [8,9]. In those studies,
electron beam exposure alone achieved only about 40%
cleanliness, while introducing sample rotation improved the
efficiency to roughly 50%, indicating only a marginal
enhancement. These findings highlight the intrinsic challenges
of applying electron beam cleaning to solar cells, where surface
conductivity, multilayer coatings, and uneven charge
accumulation hinder effective dust removal compared with
smoother dielectric surfaces.

To overcome that, the used solar cell coated with
Polydimethylsiloxane (PDMS). PDMS is a flexible, optically
transparent, and chemically inert material, showing promise in
mitigating dust accumulation on solar cells due to their low
surface energy and adhesive properties. Its flexibility allows it
to conform to irregular surfaces, ensuring effective dust capture
without significantly impacting solar efficiency, given its
transparency in the visible spectrum [10,11].

To further enhance the cleaning efficiency, a positively
biased grid (+500 V) was positioned above the solar cell surface
in addition to the electron beam exposure. The high-energy
electron beam (300 eV) charges the dust particles negatively,
after which the positively biased grid electrostatically attracts
and dislodges the charged particles from the surface.
Meanwhile, the PDMS coating reduces the adhesion forces
between the particles and the solar cell surface, enabling more
efficient removal. The effectiveness of this hybrid cleaning
approach was evaluated using image analysis in MATLAB,
comparing the brightness of the solar cell surface before and
after cleaning to quantify dust removal. The experimental
results demonstrated promising performance, achieving
approximately 90% reduction in dust coverage.

The next section presents the experimental procedure,
followed by Section 3, which discusses the results and analysis
of the obtained findings. Section 4 provides a detailed
discussion of the results in comparison with previous studies,
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and finally, the conclusion section summarizes the key
outcomes and highlights the overall effectiveness of the
proposed dust mitigation approach.

2. Experimental Work and Test Setup

The experimental work was carried out in a vacuum
chamber to investigate the removal of silica dust from the
surface of a solar cell using a hybrid dust mitigation technique.
Silica dust was selected with a layer thickness of approximately
100 pum and uniformly deposited on the solar cell surface. The
tested sample was a triple-junction solar cell with an area of 8
x 4 cm? Under standard illumination, the initial electrical
parameters of the clean solar cell were 0.445 W and 0.225 A for
maximum power and short-circuit current, respectively. After
adding PDMS coating layer to the cell surface, a slight
reduction in electrical performance was observed, with Pumax
0.400 W and I, 0.200 A, due to the optical shading introduced
by the coating.

In the hybrid cleaning process, the solar cell was first coated
with PDMS to reduce the adhesion between dust particles and
the surface. The PDMS play a role of passive mitigation
technique due to its physical characterization mentioned
previously. The contaminated surface with the silica dust was
then exposed to a pulsed electron beam with an energy of 300
eV and a current density of 3.7 x 10* A/m? applied in 10-
second on/off cycles for a total duration of 1 minute. This step
charged the dust particles, enhancing their response to the
subsequent electrostatic force. After charging, a +500 V DC
potential was applied to a copper grid placed above the solar
cell surface, also in pulsed mode (10-second on/off cycles for 1
minute). The combination of the electron beam and the electric
field generated by the grid produced sufficient electrostatic
force to overcome the gravitational and adhesive forces acting
on the dust particles. The charged dust particles by the electron
beam were attracted toward the grid and subsequently swept
away from the solar cell surface.

Inside the vacuum chamber, there is a xenon lamp used to
measure the solar cell’s electrical parameters during the
different stages of the experiment (clean, contaminated, and
after cleaning process) to evaluate the cleaning effectiveness
based on the solar cell electrical performance. A HSC (High-
Speed Camera) placed outside the vacuum chamber recorded
high-resolution images through the vacuum access window for
the solar cell surface. The captured images were analyzed using
MATLAB to compare the dust coverage before and after
cleaning, quantifying the removal efficiency based on pixel
intensity (black pixels representing clean areas and white pixels
representing dust-covered areas). The diagram for the
experimental setup is shown in Figure 1.

Fig. 1. Experimental setup of the silica dust ejecta inside the
vacuum chamber.

3. Results and Discussion

The sequence of images presented in Figure 2 illustrates the
effectiveness of the hybrid dust mitigation technique over the
course of the experiment. In image (A), a uniform layer of silica
dust can be observed on the PDMS-coated solar cell surface.
Image (B) shows the grid positioned on top of the surface prior
to initiating the cleaning process, enabling the application of an
external electric field before starting the cleaning process.
Image (C) is shown the solar cell surface after the cleaning
process demonstrates a significant reduction in dust coverage.

a

Fig. 2. Sequential images illustrating the condition of the solar
cell surface at different stages of the experiment: (A) before
cleaning, (B) during preparation with the grid in place, and (C)
after the cleaning process.
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The results in Figure 3 provide a quantitative evaluation of
the dust removal process. In the clean state, nearly the entire
surface is represented by black pixels, indicating minimal dust
coverage. After deposition, the number of white pixels
increases significantly, reflecting extensive dust accumulation
on the solar cell surface with the silica dust. Following the
cleaning process, the pixel distribution shifts back toward the
initial clean condition, with a clear reduction in white pixels and
a corresponding increase in black pixels indicating that after
following the cleaning process, most of the dust particles
removed.
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15 x10° Pixel Distribution for Each Solar Cell Condition
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Fig. 3. Pixel distribution for the solar cell under three
conditions: clean, after dust deposition, and after cleaning.
Black pixels correspond to clean surface areas, while white
pixels represent regions covered by dust particles.

Fig. 4. I-V characteristics of the solar cell under three
surface conditions: clean, after dust deposition, and after
cleaning using the hybrid dust mitigation method. The results
show the effect of dust accumulation and removal on the
electrical performance of the solar cell.

Confirming the image analysis results, the -V
characteristics in Figure 4 clearly demonstrate the impact of
dust accumulation and subsequent cleaning on the solar cell’s
electrical performance. The figure demonstrates a clear
improvement in electrical performance after the cleaning
process. Before cleaning, the short-circuit current (Is.) dropped
significantly due to dust coverage, with a measured value of
approximately 100 mA, resulting in a notable reduction in
power output. After cleaning, Is. recovered to around 180 mA,
which corresponds to roughly 90% of the initial clean state.
Similarly, the maximum power (Pmax) increased from 0.19 W
before cleaning to 0.38 W after cleaning.

4. Discussion

The presented results highlight the innovation of combining
passive and active techniques to remove silica dust from the
solar cell surface under vacuum conditions. The hybrid dust
mitigation technique integrates three main components: (1)
PDMS surface coating to reduce adhesion forces as a passive
technique, (2) pulsed electron beam exposure to
electrostatically charge the dust particles, and (3) a DC-biased
grid to generate an electric field that lifts and removes the
charged particles. Both electron beam and the grid considered
active mitigation techniques. This integrated approach
demonstrated a significant improvement in cleaning efficiency
and power recovery compared with the active method alone.
After cleaning, the solar cell recovered up to 90% of its initial
electrical output, and image analysis confirmed a comparable
~90% dust removal, showing strong agreement between optical
and electrical measurements.

The PDMS coating plays a key role in enhancing the
efficiency of the cleaning process. By coating the surface of the
solar cell, it reduces the adhesive forces that normally hold dust
particles to the surface. This means that the same exposure
parameters 300 eV pulsed electron beam (10 s on/off cycles for
1 min) and +500 V grid voltage become sufficient to detach and
remove the dust. The pulsed operation also minimizes power
consumption and allows efficient charge accumulation on the
particles without excessive heating or damage to the surface.

Despite its advantages, the hybrid technique also presents
specific challenges. First, the PDMS coating introduces a minor
shading effect, reducing the solar cell output by approximately
8% even before dust deposition. Second, the copper grid casts
a shadow during operation, limiting the power measurement
during the cleaning phase. Additionally, maintaining good
alignment between the grid and the solar cell surface is essential
for stable and uniform cleaning performance.

To address these challenges, practical solutions are
proposed for future work. A deployable or retractable grid
could be implemented, allowing the grid to be activated only
during the cleaning phase and stowed afterward, thereby
eliminating its shadowing effect during power generation.
Optimization of the PDMS layer thickness and optical
properties could further minimize shading while maintaining
low surface adhesion. Finally, refining the grid geometry and
positioning would enhance field uniformity and allow more
consistent dust removal across the entire solar cell area.

In summary, the hybrid dust mitigation method
demonstrates a promising and innovative solution to one of the
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key challenges facing long-duration lunar surface operations.
By combining PDMS coating with pulsed electron beam
exposure and a DC-biased grid, this approach achieves high
cleaning efficiency and power recovery with relatively simple
hardware. Addressing the identified limitations through
engineering improvements will enhance the system’s readiness
for practical deployment on future lunar missions.

5. Conclusion

This study demonstrated an effective hybrid dust mitigation
method for solar cells under vacuum conditions by integrating
PDMS coating, pulsed electron beam exposure, and a DC-
biased grid. The approach achieved high cleaning efficiency
and significant power recovery, confirming its potential for
future lunar surface applications. Addressing shading and grid
limitations through optimized design will further enhance
system performance and reliability for long-duration missions.
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